Perspective highlights on biodegradable polymeric nanosystems for targeted therapy of solid tumors

نویسندگان

  • Marziyeh Fathi
  • Jaleh Barar
چکیده

Introduction: Polymeric nanoparticles (NPs) formulated using biodegradable polymers offer great potential for development of de novo drug delivery systems (DDSs) capable of delivering a wide range of bioactive agents. They can be engineered as advanced multifunctional nanosystems (NSs) for simultaneous imaging and therapy known as theranostics or diapeutics. Methods: A brief prospective is provided on biomedical importance and applications of biodegradable polymeric NSs through reviewing the recently published literature. Results: Biodegradable polymeric NPs present unique characteristics, including: nanoscaled structures, high encapsulation capacity, biocompatibility with non-thrombogenic and non-immunogenic properties, and controlled-/sustained-release profile for lipophilic and hydrophilic drugs. Once administered in vivo, all classes of biodegradable polymers (i.e., synthetic, semi-synthetic, and natural polymers) are subjected to enzymatic degradation; and hence, transformation into byproducts that can be simply eliminated from the human body. Natural and semi-synthetic polymers have been shown to be highly stable, much safer, and offer a non-/less-toxic means for specific delivery of cargo drugs in comparison with synthetic polymers. Despite being biocompatible and enzymatically-degradable, there are some drawbacks associated with these polymers such as batch to batch variation, high production cost, structural complexity, lower bioadhesive potential, uncontrolled rate of hydration, and possibility of microbial spoilage. These pitfalls have bolded the importance of synthetic counterparts despite their somewhat toxicity. Conclusion: Taken all, to minimize the inadvertent effects of these polymers and to engineer much safer NSs, it is necessary to devise biopolymers with desirable chemical and biochemical modification(s) and polyelectrolyte complex formation to improve their drug delivery capacity in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanomaterials for cancer therapy and imaging.

A variety of organic and inorganic nanomaterials with dimensions below several hundred nanometers are recently emerging as promising tools for cancer therapeutic and diagnostic applications due to their unique characteristics of passive tumor targeting. A wide range of nanomedicine platforms such as polymeric micelles, liposomes, dendrimers, and polymeric nanoparticles have been extensively exp...

متن کامل

Nanotechnology for Drug Delivery: An Overview

Nanotechnology is expected to have a revolutionary impact on biology and medicine. In this paper, I will discuss the role of nanotechnology in development of site-specific drug delivery systems. Polymeric nanoparticles, lipid nanosystems, and self-assembling nanosystems are described with special emphasis on targeted drug delivery in cancer therapy.

متن کامل

Critical evaluation of biodegradable polymers used in nanodrugs

Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and...

متن کامل

Systemic Targeted Alpha Radiotherapy for Cancer

Background: The fundamental principles of internal targeted alpha therapy for cancer were established many decades ago.The high linear energy transfer (LET) of alpha radiation to the targeted cancer cellscauses double strand breaks in DNA. At the same time, the short range radiation spares adjacent normal tissues. This targeted approach complements conventional external beam radiotherapy and ch...

متن کامل

Developmental trends in targeted radionuclide therapy of neuroendocrine tumors

  Neuroendocrine tumors (NETs) constitute a heterogeneous group of neoplasms including carcinoids, pancreatic neuroendocrine tumors, pituitary tumors, medullary thyroid carcinoma and phaeochromocytomas. The symptoms and the outcome of NETs differ considerably between patients depending on several factors. By labelling tracers with a radioisotope, the tracer acts as a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017